Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108176

RESUMO

Chlamydia psittaci (C. psittaci), a zoonotic pathogen, poses a potential threat to public health security and the development of animal husbandry. Vaccine-based preventative measures for infectious diseases have a promising landscape. DNA vaccines, with many advantages, have become one of the dominant candidate strategies in preventing and controlling the chlamydial infection. Our previous study showed that CPSIT_p7 protein is an effective candidate for a vaccine against C. psittaci. Thus, this study evaluated the protective immunity of pcDNA3.1(+)/CPSIT_p7 against C. psittaci infection in BALB/c mice. We found that pcDNA3.1(+)/CPSIT_p7 can induce strong humoral and cellular immune responses. The IFN-γ and IL-6 levels in the infected lungs of mice immunized with pcDNA3.1(+)/CPSIT_p7 reduced substantially. In addition, the pcDNA3.1(+)/CPSIT_p7 vaccine diminished pulmonary pathological lesions and reduced the C. psittaci load in the lungs of infected mice. It is worth noting that pcDNA3.1(+)/CPSIT_p7 suppressed C. psittaci dissemination in BALB/c mice. In a word, these results demonstrate that the pcDNA3.1(+)/CPSIT_p7 DNA vaccine has good immunogenicity and immunity protection effectiveness against C. psittaci infection in BALB/c mice, especially pulmonary infection, and provides essential practical experience and insights for the development of a DNA vaccine against chlamydial infection.


Assuntos
Infecções por Chlamydia , Chlamydophila psittaci , Psitacose , Vacinas de DNA , Animais , Camundongos , Chlamydophila psittaci/genética , Vacinas de DNA/genética , Camundongos Endogâmicos BALB C , Proteínas de Bactérias/genética , Vacinas Bacterianas , Psitacose/prevenção & controle , Pulmão/patologia , Infecções por Chlamydia/prevenção & controle , Plasmídeos/genética , DNA
2.
Front Microbiol ; 13: 987662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504792

RESUMO

Chlamydia is an obligate intracellular bacterium where most species are pathogenic and infectious, causing various infectious diseases and complications in humans and animals. Antibiotics are often recommended for the clinical treatment of chlamydial infections. However, extensive research has shown that antibiotics may not be sufficient to eliminate or inhibit infection entirely and have some potential risks, including antibiotic resistance. The impact of chlamydial infection and antibiotic misuse should not be underestimated in public health. This study explores the possibility of new therapeutic techniques, including a review of recent studies on preventing and suppressing chlamydial infection by non-antibiotic compounds.

3.
World J Diabetes ; 13(8): 665-667, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36159228

RESUMO

Skeletal muscle is a massive insulin-sensitive tissue in the body. Loss of muscle mass is associated with mitochondrial dysfunction, and is often a result of diabetes. Insulin deficiency or insulin resistance can only be seen as reduced skeletal muscle mass. Diabetes is caused by insulin deficiency or insulin resistance; however, insulin resistance is not unique to diabetics. Insulin resistance also exists in many diseases.

4.
Front Immunol ; 12: 821538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126377

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high infectivity, pathogenicity, and variability, is a global pandemic that severely affected public health and the world economy. The development of safe and effective vaccines is crucial to the prevention and control of an epidemic. As an emerging technology, mRNA vaccine is widely used for infectious disease prevention and control and has significant safety, efficacy, and high production. It has received support and funding from many pharmaceutical enterprises and becomes one of the main technologies for preventing COVID-19. This review introduces the current status of SARS-CoV-2 vaccines, specifically mRNA vaccines, focusing on the challenges of developing mRNA vaccines against SARS-CoV-2, and discusses the relevant strategies.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/fisiologia , Vacinas de mRNA/imunologia , Animais , Humanos , Desenvolvimento de Vacinas , Eficácia de Vacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...